On the semitopological locally compact α -bicyclic monoid

Serhii Bardyla

National University of Lviv

Winter School in Abstract Analysis Hejnice, Czech Republic, February 2, 2017

Definition

A semigroup S is called an $\it inverse\ semigroup$ if for every a in S there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Definition

A semigroup S is said to be:

• bisimple if S contains only one \mathcal{D} -class;

• ω^{α} -semigroup if the semigroup of idempotents of S is isomorphic to the semilattice (ω^{α}, \max).

Definition

A *topological* (*inverse*) *semigroup* is a topological space together with a continuous semigroup operation (and an inversion, respectively).

Definition

Definition

A semigroup S is called an $\it inverse\ semigroup$ if for every a in S there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Definition

A semigroup S is said to be:

• *bisimple* if S contains only one \mathscr{D} -class;

• ω^{α} -semigroup if the semigroup of idempotents of S is isomorphic to the semilattice (ω^{α}, \max) .

Definition

A *topological* (*inverse*) *semigroup* is a topological space together with a continuous semigroup operation (and an inversion, respectively).

Definition

Definition

A semigroup S is called an $\it inverse\ semigroup$ if for every a in S there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Definition

A semigroup S is said to be:

• *bisimple* if S contains only one \mathscr{D} -class;

• ω^{α} -semigroup if the semigroup of idempotents of S is isomorphic to the semilattice (ω^{α}, \max) .

Definition

A *topological* (*inverse*) *semigroup* is a topological space together with a continuous semigroup operation (and an inversion, respectively).

Definition

Definition

A semigroup S is called an $\it inverse\ semigroup$ if for every a in S there exists an unique element a^{-1} in S such that

$$aa^{-1}a = a$$
 and $a^{-1}aa^{-1} = a^{-1}$.

Definition

A semigroup S is said to be:

• *bisimple* if S contains only one \mathscr{D} -class;

• ω^{α} -semigroup if the semigroup of idempotents of S is isomorphic to the semilattice (ω^{α}, \max) .

Definition

A *topological* (*inverse*) *semigroup* is a topological space together with a continuous semigroup operation (and an inversion, respectively).

Definition

The bicyclic monoid $\mathscr{B}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. It could be represented as a set $\mathbb{N} \times \mathbb{N}$ endowed with the following binary operation:

$$(a,b) \cdot (c,d) = \begin{cases} (a+c-b,d), & \text{if } b \le c; \\ (a,d+b-c), & \text{if } b > c. \end{cases}$$

Definition

By the α -bicyclic monoid \mathcal{B}_{α} we denote the set $\omega^{\alpha} \times \omega^{\alpha}$ endowed with the following binary operation:

$$(a,b) \cdot (c,d) = \begin{cases} (a + (c - b), d), & \text{if } b \le c; \\ (a,d + (b - c)), & \text{if } b > c, \end{cases}$$

where a - b = c iff a = b + c.

The bicyclic monoid $\mathscr{B}(p,q)$ is the semigroup with the identity 1 generated by two elements p and q subjected only to the condition pq = 1. It could be represented as a set $\mathbb{N} \times \mathbb{N}$ endowed with the following binary operation:

$$(a,b) \cdot (c,d) = \begin{cases} (a+c-b,d), & \text{if } b \le c; \\ (a,d+b-c), & \text{if } b > c. \end{cases}$$

Definition

By the α -bicyclic monoid \mathcal{B}_{α} we denote the set $\omega^{\alpha} \times \omega^{\alpha}$ endowed with the following binary operation:

$$(a,b) \cdot (c,d) = \begin{cases} (a + (c - b), d), & \text{if } b \le c; \\ (a,d + (b - c)), & \text{if } b > c, \end{cases}$$

where a - b = c iff a = b + c.

Let (S, \star) be an arbitrary semigroup. The Bruck extension B(S) of a semigroup S is a set $\mathbb{N} \times S \times \mathbb{N}$ endowed with the following semigroup operation:

$$(a, s, b) \cdot (c, t, d) = \begin{cases} (a + c - b, t, d), & \text{if } b < c; \\ (a, s, d + b - c), & \text{if } b > c; \\ (a, s \star t, d), & \text{if } b = c. \end{cases}$$

Definition

Let (S, \star) be a monoid and θ be a homomorphism from S to the group of units G(S) of S. The Bruck-Reilly extension BR(S) of a semigroup S is a set $\mathbb{N} \times S \times \mathbb{N}$ endowed with the following semigroup operation:

$$(a, s, b) \cdot (c, t, d) = \begin{cases} (a + c - b, \theta^{c-b}(s) \star t, d), & \text{if } b < c; \\ (a, s \star \theta^{b-c}(t), d + b - c), & \text{if } b > c; \\ (a, s \star t, d), & \text{if } b = c. \end{cases}$$

Let (S, \star) be an arbitrary semigroup. The Bruck extension B(S) of a semigroup S is a set $\mathbb{N} \times S \times \mathbb{N}$ endowed with the following semigroup operation:

$$(a, s, b) \cdot (c, t, d) = \begin{cases} (a + c - b, t, d), & \text{if } b < c; \\ (a, s, d + b - c), & \text{if } b > c; \\ (a, s \star t, d), & \text{if } b = c. \end{cases}$$

Definition

Let (S, \star) be a monoid and θ be a homomorphism from S to the group of units G(S) of S. The Bruck-Reilly extension BR(S) of a semigroup S is a set $\mathbb{N} \times S \times \mathbb{N}$ endowed with the following semigroup operation:

$$(a, s, b) \cdot (c, t, d) = \begin{cases} (a + c - b, \theta^{c-b}(s) \star t, d), & \text{if } b < c; \\ (a, s \star \theta^{b-c}(t), d + b - c), & \text{if } b > c; \\ (a, s \star t, d), & \text{if } b = c. \end{cases}$$

Proposition (Reilly, 1966).

Each bisimple regular $\omega\text{-semigroup}$ is isomorphic to the Bruck–Reilly extension of some group.

Proposition (Hogan, 1973).

Each bisimple ω^{α} -semigroup is isomorphic to the product $G \times \mathcal{B}_{\alpha}$ of the α -bicyclic semigroup and some group G, endowed with a following semigroup operation:

$$(s, (a, b)) \cdot (t, (c, d)) = \begin{cases} (st, (a, b)(c, d)) & \text{if } b = c; \\ (s|(b-c)^c|^{-1}(t\theta'_{b-c})|(b-c)^d|, (a, b)(cd)), & \text{if } b > c; \\ (|(c-b)^a|^{-1}(s\theta'_{c-b})|(c-b)^b|t, (a, b)(cd)), & \text{if } b < c. \end{cases}$$

Proposition (Reilly, 1966).

Each bisimple regular $\omega\text{-semigroup}$ is isomorphic to the Bruck–Reilly extension of some group.

Proposition (Hogan, 1973).

Each bisimple ω^{α} -semigroup is isomorphic to the product $G \times \mathcal{B}_{\alpha}$ of the α -bicyclic semigroup and some group G, endowed with a following semigroup operation:

$$(st, (a, b)(c, d)) \qquad \text{if } b = c;$$

$$(s, (a, b)) \cdot (t, (c, d)) = \begin{cases} (s|(b-c)^c|^{-1}(t\theta_{b-c})|(b-c)^a|, (a, b)(cd)), & \text{if } b > c; \\ (|(c-b)^a|^{-1}(s\theta' - c)|(c-b)^b|t, (a, b)(cd)), & \text{if } b < c. \end{cases}$$

Proposition (Eberhart, Selden, 1969).

The only Hausdorff topology on $\mathscr{C}(p,q),$ which makes $\mathscr{C}(p,q)$ into a topological semigroup is the discrete topology.

Proposition (Bertman, West, 1976).

The only Hausdorff topology on $\mathscr{C}(p,q)$, which makes $\mathscr{C}(p,q)$ into a semitopological semigroup is the discrete topology.

Proposition (Selden, 1985).

There exists a non-discrete Hausdorff topology on \mathcal{B}_2 , which makes \mathcal{B}_2 into a topological inverse semigroup.

Proposition (Eberhart, Selden, 1969).

The only Hausdorff topology on $\mathscr{C}(p,q),$ which makes $\mathscr{C}(p,q)$ into a topological semigroup is the discrete topology.

Proposition (Bertman, West, 1976).

The only Hausdorff topology on $\mathscr{C}(p,q),$ which makes $\mathscr{C}(p,q)$ into a semitopological semigroup is the discrete topology.

Proposition (Selden, 1985).

There exists a non-discrete Hausdorff topology on \mathcal{B}_2 , which makes \mathcal{B}_2 into a topological inverse semigroup.

Proposition (Eberhart, Selden, 1969).

The only Hausdorff topology on $\mathscr{C}(p,q),$ which makes $\mathscr{C}(p,q)$ into a topological semigroup is the discrete topology.

Proposition (Bertman, West, 1976).

The only Hausdorff topology on $\mathscr{C}(p,q),$ which makes $\mathscr{C}(p,q)$ into a semitopological semigroup is the discrete topology.

Proposition (Selden, 1985).

There exists a non-discrete Hausdorff topology on \mathcal{B}_2 , which makes \mathcal{B}_2 into a topological inverse semigroup.

For each ordinal α the α -bicyclic monoid \mathcal{B}_{α} is isomorphic to a semigroup of all order isomorphisms between the principal upper sets of the ordinal ω^{α} .

Problem (Nowak, 7 hours ago)

Are you a self-similar?

Proposition 2

For each ordinal α the $\alpha + 1$ -bicyclic semigroup $\mathcal{B}_{\alpha+1}$ is isomorphic to the Bruck extension of the α -bicyclic semigroup \mathcal{B}_{α} .

For each ordinal α the α -bicyclic monoid \mathcal{B}_{α} is isomorphic to a semigroup of all order isomorphisms between the principal upper sets of the ordinal ω^{α} .

Problem (Nowak, 7 hours ago)

Are you a self-similar?

Proposition 2

For each ordinal α the $\alpha + 1$ -bicyclic semigroup $\mathcal{B}_{\alpha+1}$ is isomorphic to the Bruck extension of the α -bicyclic semigroup \mathcal{B}_{α} .

For each ordinal α the α -bicyclic monoid \mathcal{B}_{α} is isomorphic to a semigroup of all order isomorphisms between the principal upper sets of the ordinal ω^{α} .

Problem (Nowak, 7 hours ago)

Are you a self-similar?

Proposition 2

For each ordinal α the α + 1-bicyclic semigroup $\mathcal{B}_{\alpha+1}$ is isomorphic to the Bruck extension of the α -bicyclic semigroup \mathcal{B}_{α} .

Let \mathcal{B}_{α} be a Hausdorff semitopological semigroup and $(a, b) \in \mathcal{B}_{\alpha}$ be an arbitrary element. If either a or b is an non-limit ordinal then (a, b) is an isolated point in \mathcal{B}_{α} .

Proposition 2

For each ordinal $\alpha < \omega + 1$ the only Hausdorff locally compact topology which makes \mathcal{B}_{α} into a topological semigroup is the discrete topology.

Proposition 3

There exists an example of a non-discrete Hausdorff locally compact topological inverse $\omega + 1$ -bicyclic monoid $\mathcal{B}_{\omega+1}$.

Let \mathcal{B}_{α} be a Hausdorff semitopological semigroup and $(a, b) \in \mathcal{B}_{\alpha}$ be an arbitrary element. If either a or b is an non-limit ordinal then (a, b) is an isolated point in \mathcal{B}_{α} .

Proposition 2

For each ordinal $\alpha < \omega + 1$ the only Hausdorff locally compact topology which makes \mathcal{B}_{α} into a topological semigroup is the discrete topology.

Proposition 3

There exists an example of a non-discrete Hausdorff locally compact topological inverse $\omega + 1$ -bicyclic monoid $\mathcal{B}_{\omega+1}$.

Let \mathcal{B}_{α} be a Hausdorff semitopological semigroup and $(a, b) \in \mathcal{B}_{\alpha}$ be an arbitrary element. If either a or b is an non-limit ordinal then (a, b) is an isolated point in \mathcal{B}_{α} .

Proposition 2

For each ordinal $\alpha < \omega + 1$ the only Hausdorff locally compact topology which makes \mathcal{B}_{α} into a topological semigroup is the discrete topology.

Proposition 3

There exists an example of a non-discrete Hausdorff locally compact topological inverse $\omega + 1$ -bicyclic monoid $\mathcal{B}_{\omega+1}$.

For each positive integer n there exist exactly n distinct Hausdorff locally compact topologies which make \mathcal{B}_n into a semitopological semigroup.

Proposition 5

The set of all Hausdorff locally compact topologies which make \mathcal{B}_{ω} into a semitopological semigroup is countable.

Proposition 6

For each ordinal $\alpha < \omega + 1$ the set of all Hausdorff locally compact topologies which make \mathcal{B}_{α} into a semitopological semigroup is a linearly ordered lattice.

For each positive integer n there exist exactly n distinct Hausdorff locally compact topologies which make \mathcal{B}_n into a semitopological semigroup.

Proposition 5

The set of all Hausdorff locally compact topologies which make \mathcal{B}_{ω} into a semitopological semigroup is countable.

Proposition 6

For each ordinal $\alpha < \omega + 1$ the set of all Hausdorff locally compact topologies which make \mathcal{B}_{α} into a semitopological semigroup is a linearly ordered lattice.

For each positive integer n there exist exactly n distinct Hausdorff locally compact topologies which make \mathcal{B}_n into a semitopological semigroup.

Proposition 5

The set of all Hausdorff locally compact topologies which make \mathcal{B}_{ω} into a semitopological semigroup is countable.

Proposition 6

For each ordinal $\alpha < \omega + 1$ the set of all Hausdorff locally compact topologies which make \mathcal{B}_{α} into a semitopological semigroup is a linearly ordered lattice.

Thank You for attention!